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Abstract 

We describe the development of a commercial real-time logistics management 
system for on-demand services - last mile deliveries, taxis and mobile workforce 
scheduling. We highlight the research and technical challenges that arose during the 
development, so an interested reader can (a) avoid making costly errors if they 
chose to develop their own system and (b) weigh the pros and cons of developing an 
in-house system or sourcing an external one. 

Introduction 

Over the last couple of years Open Door Logistics has been developing ODL Live, a 
low-cost (flat fee) cloud-based planning engine for real-time route optimisation and 
delivery management. With real-time vehicle scheduling, some or all future jobs for 
the current shift are unknown. Appointment scheduling – the process of offering 
service time slots to customers and then confirming their selection, is also a real-
time planning problem as the booking of one time slot affects the availablity of 
others. Real-time route scheduling problems, usually called 'dynamic vehicle routing 
problems' in the research literature, appear in a number of industries, for example: 

• On-demand deliveries - takeaway food, drinks, laundry collection etc. 

• Taxi services, both for general public and specialised services for the elderly, 
less-abled or patients. 

• Field force optimisation, repair technicians, surveyors, engineers or any other 
workers who drive significant distances and either (a) accept new jobs on the 
same day or (b) need route-efficient efficient appointment booking. 

• Time slot generation for home delivery networks, i.e. offering time-slots to 
customers browsing an e-commerce site, based on planned routes. 

We started developing ODL Live by integrating two open source libraries for travel 
time estimation and static vehicle routing - Graphhopper and Jsprit respectively 
(now merged into just Graphhopper). A 'static' vehicle routing problem is the 
traditional academic problem where jobs and drivers are 100% known prior to the 
delivery period starting, and a single plan can therefore be generated at the start of 
the period. We had previously integrated these libraries into ODL Studio. ODL 
Studio is our open source desktop-based application for static vehicle routing 
problems (i.e. not real-time), designed for planning daily routes at the start of the 
day. Re-using these libraries for a real-time engine was therefore a logical choice for 
us. 

http://www.opendoorlogistics.com/
http://www.graphhopper.com/
https://github.com/graphhopper/jsprit
http://www.opendoorlogistics.com/software/odl-studio/
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Graphhopper and Jsprit provided a solid foundation but also lacked key features 
which proved essential for real-time route planning, which we discuss in-detail in 
the following sections. Whilst extending these libraries and building a dynamic 
logistics management system we had to overcome many different technical and 
research challenges. We group these technical challenges - and their associated 
solutions - into five loose categories: 

1. 100% incremental processing ('need for speed') 

2. Mapping a real-time to a static problem ('the day the earth stood still') 

3. Simulating live problems ('the time machine') 

4. Accurate travel time estimation using free data ('an unexpected journey') 

5. Adapting real-time route planning to cloud-based architecture ('cloud atlas') 

The ODL Live feature list discussed here relates to the current production release as 
per June 2017. Many other features are in active development - consult the road-
map (at the end of this document), for features that are coming in the near-future. 

100% incremental processing ('need for speed') 

A real-time planning engine for last mile deliveries takes a constant feed of data - 
GPS from mobile devices, new jobs coming in from order processing systems, 
delivery arrival or completion events etc. The schedule - ordered list of planned 
deliveries for each vehicle - must constantly adapt to stay efficient. 

Typically there are two phases to solving a vehicle routing problem: 

1. Generate a matrix of travel times and distances between all relevant locations. 

2. Use a solver method to generate a plan. 

A naive implementation of a real-time scheduler would recalculate the matrix and 
plan from scratch whenever new data is available, but for most practical 
applications this would be far too slow. In a real-time dispatching scenario - for 
example hot foods delivery - waiting a minute or two for the planner to catch-up 
with a new job before it could be dispatched is not acceptable. Similarly on-the-fly 
generation of delivery timeslots for a customer browsing your e-commerce site 
could never be powered by a 'recalculate all' approach. 

When we consider the dependence on problem size, a 'recalculate all' approach 
quickly becomes intractable as the number of jobs increases. Live data updates 
arrive more frequently but, as the problem is larger, good solutions take longer to 



P a g e  4 | 12 

 

generate when you start the optimisation from scratch. For an insertion-based 
heuristic solver such as Jsprit, the processing time required to perform a single 
search iteration scales with at least the square power of the number of jobs, and in 
many circumstances would scale with the cubed power. These are state-of-the-art 
solvers, with much better scaling than mathematical programming approaches, but 
performance still degrades rapidly with increased problem size. Pretty soon a solver 
used in 'recalculate all' mode wouldn't be able to generate new high-quality 
solutions quick enough. 

Clearly the only viable technical solution is an incremental optimiser, which reuses 
previous calculations wherever possible. ODL Live implements this in a number of 
ways: 

Preloaded data. A model is always ready pre-loaded in server memory (e.g. the 
road network data, travel time matrix, solution state are always ready) and the 
optimiser is always running, constantly refining its routing plans. Memory 
consumption increases but disk I/O is no longer a factor. 

Incremental matrix calculations. The matrix is updated incrementally. The base 
road network travel calculations are performed using the Graphhopper library, 
which uses the Contraction Hierarchies algorithm (Geisberger et al. 2008) to 
speedup traditional Dijkstra driving direction calculations. Contraction hierachies 
within Graphhopper are however geared towards finding single A to B route pairs, 
not filling a matrix of travel times to and from many locations. Knopp et al. 2007 
describe a method to efficiently calculate matrices for a similar algorithm to 
Contraction Hierarchies, where the shortest path trees from/to each location are 
cached and reused. We use a suitably adapted implementation of this method and 
cache the trees in a compact form, then use them in an auxiliary algorithm to 
incrementally fill the matrix when new A to B travel times and distances are 
required. 

Reusing previous routing plan. The solver itself is also incremental. The Jsprit 
library solves vehicle routing problems but (at the time of writing), cannot be run 
incrementally, starting its search from a previous solution when the input data has 
changed. We use a modified and extended version of Jsprit which can restart its 
search method from a previous solution, but adjust accordingly when the solution is 
no longer feasible - for example when constraints such as vehicle capacity, skills or 
delivery time windows make parts of the solution infeasible. 

Technically Jsprit uses a search method called ruin and recreate which is guided by 
another search method (or 'metaheuristic'), which for practical purposes is 
equivalent to simulated annealing. In our incremental optimisation framework, we 
run short bursts of optimisation on a 'fixed' vehicle routing problem, then repoll for 
changes to the input data, update the matrix and run the next burst starting with the 

https://en.wikipedia.org/wiki/Simulated_annealing
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previous solution. Simulating annealing (Khachaturyan et al. 1979) is unsuitable for 
running short repeated bursts of optimisation on a changing problem as it uses an 
annealing schedule - a slow decrease in the probability of accepting worse solutions. 
A short burst of optimisation might only last a couple of iterations whereas an 
annealing schedule would need to act over hundreds of iterations, so an annealing 
schedule cannot be used within a burst. Moreover it is inappropriate to use the same 
annealing schedule across multiple optimisation bursts as the underlying vehicle 
routing problem has changed, meaning the solution fitness landscape has also 
changed and the principles behind simulated annealing no longer apply. Instead we 
use a parallel multi-start algorithm of our own devising as similar algorithms have 
been shown to be effective for dynamic optimisation problems (e.g. Li 2011). The 
rationale is that maintaining parallel solutions within the search increases the 
likelihood of having a solution which is still suitable - with minimal updates - when 
the underlying problem changes. Multi-start also helps to prevent the solver 
becoming stuck in local minima when the underlying data changes significantly. 

Our incremental framework allows us to efficiently run the optimiser in short bursts 
of a few hundred milliseconds up to a couple of seconds, for problems with up to 
1000 live jobs. It therefore allows a near-instantaneous response to new data. 
Larger problems may need longer burst durations, or to be split into suitable 
independent sub-problems (e.g. by defining delivery territories). 

Mapping a real-time to a static problem ('the day the earth stood 
still') 

Pillac et al. 2013 discuss two different approaches to solving dynamic / real-time 
vehicle routing problems: 

1. Periodic reoptimisation, where the real-time routing problem is translated into a 
static problem and solved periodically (presumably from scratch each time), 
and: 

2. Continuous reoptimisation - where the current best solution(s) are updated as 
the input data changes. 

Although technically our approach falls under the continuous optimisation category 
- as we reuse and update the solution from the preceding optimisation burst - each 
individual burst optimises the routing problem as a static routing problem. We 
therefore assume the problem is fixed for the duration of the burst and have to map 
our 'real-time' problem to the fixed static problem. 

The basic conversion from a real-time to a static problem - converting GPS traces, 
vehicle state, stop arrival and completion events, pending jobs etc. into vehicle 
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starting points, fixed costs, jobs - is a little complex but not insurmountable. We did 
however find that the resulting static problem contained unusual constraints and 
costs and other features not commonly found in traditional static vehicle routing 
problems. Solving these required the implementation of various custom constraints 
within Jsprit and some modifications to Jsprit itself. We present a selection of these 
features in the following list. 

• Soft end time windows. In a real-life real-time vehicle routing problem soft 
end time windows - penalising but still allowing a late arrival - are unavoidable. 
Minor delays will often put deliveries slightly off schedule and simply not 
serving a delivery that will be one second late is not an option. 

• Handling manual overrides to the plan. Users can override the automated 
scheduler's chosen dispatches. Particularly in the case of pickup-delivery 
problems (e.g. for couriers), this can result in an infeasible static problem - 
where the user's manual override breaks quantity constraints. We had to re-
write the quantity constraint model within Jsprit to a more refined version 
which handles this situation gracefully. 

• Spreading work out across the fleet, to maximise the chances of servicing 
future jobs. If certain drivers are filled to capacity, then any new incoming jobs 
which require those specific drivers cannot be served. Balancing work between 
vehicles is therefore surprisingly important for a real-time problem. 

• Prioritising on-board jobs, locking deliveries but not collections. 

Whilst not strictly part of the 'static' vehicle routing problem, several other 
'algorithmic' issues croped up related to the optimisation model, which we had to 
solve. Examples include: 

• Deciding rules for job dispatching. Should a job be dispatched to a driver as 
soon as it becomes known or should it be buffered for a while? Clearly the 
driver needs a small buffer of dispatched job(s) which are 'locked down' (e.g. 
their next one or two stops are fixed), as communication delays may occur 
when transmitting new dispatches. A small buffer is good as it gives the 
optimiser more flexibility, but how small a buffer is feasible? 

• Determining when new sub-optimal solutions are actionable. Given the 
constant feed of incoming data, when many jobs are added at once, or perhaps a 
vehicle gets significantly delayed, the current plan will no longer be efficient. 
For larger problems - particularly if you're running many problems in-parallel 
on the same server, the optimiser might take a while to 'catch-up' and generate 
a new high-quality solution. Should intermediary quality solutions be presented 
to the user or not? Should we delay a pending dispatch, particularly one that's 
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already late, in-case the optimiser decides five seconds later that the dispatch is 
no longer the best one to make? 

Simulating live problems ('the time machine') 

One of the key issues we encountered in developing a real-time delivery 
management engine was how to test it in a realistic way, ensuring modelling of 
historic data gives an accurate evaluation of the system's future performance? The 
key point about a real-time optimiser is that some or all of the jobs are unknown at 
the start of the driver shifts and new jobs become known when drivers are already 
serving existing jobs. It is impossible to generate a single plan at the start of the day 
for all jobs. Offline modelling using a single fixed plan for all jobs would grossly 
overestimate the routing efficiency, as it assumes the optimiser can see the future. 

Instead we developed a discrete event simulation tool to allow us to accurately 
model historic data, without assuming future knowledge. The simulator wraps 
around the planning engine and simulates the evolution of the planning over the 
entire planning period (e.g. day, week etc). At the start of the planning period, only a 
few jobs are known and the simulator plans just those jobs. Separately the simulator 
models the vehicles as 'agents' which depart for stops, arrive and complete them, 
whilst generating GPS traces. As more jobs become known, the simulator re-plans 
taking into account the positions of the simulated vehicles and what deliveries are 
already complete. Within the simulation, the delivery plan evolves continually over 
the course of the day as the situation changes. 

The simulator lets us accurately model historic scenarios for real-time planning 
problems across a number of different industries (e.g. taxis, service engineers, on-
demand deliveries), realistically gauging the performance of ODL Live. We consider 
the ability to perform correct, accurate offline modelling to be an essential part of 
any dynamic optimiser system. 

Accurate travel time estimation using free data ('an unexpected 
journey') 

Pricing for other commercial vendors of dynamic vehicle routing systems is 
normally either per driver (e.g. USD $10 or $20 per driver per month) or per job 
(e.g. USD $0.20 per job). One of our key aims is to instead retain a low-cost flat 
subscription fee independent of the number of jobs or vehicles optimised. We 
ensure this is financially viable by (a) by separating out the cost of the Amazon 
Webservices (AWS) virtual servers to run ODL Live and letting the client size the 
server to their own needs and (b) using free crowd-sourced OpenStreetMap (OSM) 
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road network data. We work the OSM data - and other free data sources - as much as 
possible to get accurate travel times at minimum cost. Commercial mapping data 
providers - e.g. HERE - would typically charge per vehicle, making a flat subscription 
fee for ODL Live impossible. Although OSM data may be less accurate than 
commercial data, we believe this can be mitigated, to the point it is unlikely to be an 
issue, by taking the time to appropriately calibrate the data. 

The Graphhopper library provides estimates of travel times using OSM road 
network data. However, the current out-of-the-box version (as per June 2017) 
combined with the Jsprit library does not take traffic into account. We have 
therefore built traffic modelling functionality on top of these libraries. The 
integration of traffic effects into a live route planning and job dispatching system is 
hard from a development point of view, but it can be made simpler by separating 
the work out into three separate stages. With each stage that is integrated into the 
system, the scheduling results become more precise. As of June 2017, the 
production version of ODL Live models these first two stages and the third is in 
active development. 

Stage I - predictable time-independent traffic for city centres. Roads in urban 
areas, particularly the centres of large cities, will be on-average a lot slower than 
roads in suburban or rural areas, even if they have the same legal speed limits. 

Our SpeedRegions project, built on-top of Graphhopper, lets road speeds be fine-
tuned to high geographic accuracy (e.g. cells of 100 metres x 100 metres). To enable 
quick rebuilding of the routing graph with speed regions, we developed a 
specialised quadtree-like lookup algorithm to quickly identify the speed region a 
particular stretch of road falls within. We also developed a customised version of 
our ODL Studio desktop app for analysts and planners to fine-tune road speeds by 
postcode or zip and compare travel times to historic journeys. 

Stage II - predictable time-dependent traffic (a.k.a. rush hours). Urban areas 
will have rush hours - periods of the day where heavy commuter traffic causes 
delays. Rush hour modelling was integrated with minimal changes to Graphhopper 
but large changes to Jsprit - we had to re-write the insertion heuristics to properly 
evaluate adding jobs to existing routes with rush hours and soft end time windows. 
Our rush hour implementation is based around distinct periods (e.g. 8:00 to 9:30) 
having their own speed profiles. Journeys that span two or more 'speed periods' 
have their travel time correctly calculated using a closed-form time-dependent 
mathematical equation (e.g. departing between 9:04 and 10:21 the travel time in 
seconds will be 20 + 31 t). Closed form equations let us quickly calculate travel time 
for a given departure time, minimising the additional CPU burden. They also make 
the development of future planned speed-ups to the insertion processing more 
tractable. The equations are carefully formulated to ensure they don't break any 

https://github.com/PGWelch/speedregions
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assumptions within the Jsprit search algorithm (e.g. the triangle inequality / no 
overtaking yourself by leaving later). The equations are derived on-the-fly as 
needed and cached. 

Speed periods can be customised as desired based on a driver team's knowledge. 
Intermediary periods (e.g. 'early rush hour') can also be defined, blending speeds 
from multiple time profiles within a built Graphhopper road network graph. 
Daylight savings time changes are also fully accounted for using speed periods. 

Stage III - unexpected delays, particularly congestion caused by accidents or 
temporary road closures, requiring real-time traffic data feeds. Integrating real-time 
traffic updates is currently work in-progress and we will report more when it is 
complete. We plan to use real-time data feeds on specific traffic incidents that are 
available for free or at low cost (e.g. see http://www.trafficengland.com/services-
info). These feeds and the OSM road network graph will be incorporated into a 
model which can extrapolate a reasonable approximation of the impact of traffic 
incidents further across the road network - for example on parallel alternate routes, 
similar to that investigated by Wirtz et al. 2004. 

Adapting real-time route planning to cloud-based architecture ('cloud 
atlas') 

The de-facto standard for modern IT systems is a cloud-based architecture 
comprised of a collection of loosely coupled services (or microservices), each of 
which can be independently updated or replaced. As a real-time optimiser is always 
running, potentially 24-7, it must be resilient to hardware failure, making cloud-
based server virtualisation with automated failover the ideal (or possibly the only) 
hosting solution. ODL Live is deployed as a microservice on AWS and is compatible 
with other cloud hosting providers. 

Developing a RESTful webservice API for ODL Live, with model objects passed as 
JSON, was relatively straightforward. However getting ODL Live - and any other 
real-time scheduler - to 'play nicely' in the cloud came with a number of challenges. 
We outline these in the next paragraphs. 

Data syncing strategy. A real-time scheduler takes a constant data feed from a 
client's back-end systems - e.g. their order processing systems and their server-side 
system corresponding to their mobile driver app. With multiple data updates per 
second, how do we keep the state of the ODL Live model (jobs, drivers locations etc.) 
properly in-sync with a client's systems, whilst minimising the incoming data 
bandwidth? Again the answer was to use incremental processing. We engineered 
our RESTful API to support both (a) updating individual jobs or vehicle records for 
small, frequent updates such as GPS location and (b) refreshing all data at once but 

https://en.wikipedia.org/wiki/Triangle_inequality
http://www.trafficengland.com/services-info
http://www.trafficengland.com/services-info
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less frequently, e.g. once a minute, to ensure ODL Live's state correctly mirrors the 
clients backend systems. To avoid the client having to constantly repoll for updated 
routes, webhooks call back to the client's system and tell it when planned routes 
have changed. 

CPU resource balancing across multiple vehicle routing problems. It is common 
for organisations running on-demand deliveries, people transportation (i.e. taxis) or 
similar across multiple cities to have different driver teams and separate 
management structures for each city. The performance of an optimiser degrades 
with at least the square of the number of live jobs in the vehicle routing model. This 
makes a 'divide-and-conquer' approach - where different cities are treated as 
independent problems - ideal for applications where different cities are served 
independently. Unfortunately, this brings about a further complication, how to 
intelligently allocate CPU resources when running multiple vehicle routing models 
in-parallel on the same server? 

To solve this we created an 'intelligent CPU agent' which assigns CPU to routing 
models based on their relative need, so larger models or rapidly changing models 
receive more CPU time than small or seldom-changing ones. The determination of 
'relative need' turned out to be difficult as it required an estimate of solution quality 
compared to the (unknown) optimal solution; we approached this using statistical 
techniques. Using the 'intelligent CPU agent' a relatively modest virtual server with 
a fixed rental cost will comfortably run many routing models in parallel (greatly 
exceeding the number of CPU cores on the server). 

Minimising database I/O. ODL Live stores both its current solution and input 
model data in a managed, automatically replicated database. Having a managed 
database backend ensures that the solver can come back up again correctly - and 
without loss of best solution - should the virtual server failover or otherwise reboot. 
This itself brings about another problem - if the solution changes every 100 
milliseconds the amount of writes to the database could create a major bottleneck 
(and incur significant AWS data transfer charges). For this reason we developed a 
solution update throttling technique to put the brakes on excessive solution writes 
to the database but still prioritise those writes - e.g. acceptance of new job - which 
are time-crucial. We also implemented data caching strategies to minimise data 
throughput between the optimiser and managed database. 

Road-map of future developments 

We have a number of different developments planned for the live planning engine in 
the near-future, based on the needs of our key clients. In addition to the integration 
of live traffic data as discussed in the preceding section, we plan to develop tools for 
the automated calibration of speeds in the built road network graph. Several of our 

https://en.wikipedia.org/wiki/Webhook
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clients have historic data containing A to B travel times for their fleets, numbering 
tens or hundreds of thousands of journeys. We plan to mine this data to 
automatically fine-tune the road network speeds across the day (e.g. early morning, 
rush hour, etc.) and generate predicted journey times with an accuracy as good as, 
or exceeding commercial map data. This will require some degree of inference, as 
the number of historic journeys although great, will not give complete coverage of 
the road network. By assuming drivers usually take the quickest routes, it should be 
possible to make inferences on road speeds for parts of the network nearby to, but 
not covered by the historic journeys. The exclusion of a nearby road link from a 
historic route may place an upper bounds on its speed. 

The integration of demand prediction into ODL Live has been a long-term goal since 
development first started several years back. The engine is now reaching a level of 
maturity - in terms of available functionality - where demand prediction becomes a 
logical next development step. A sophisticated integration of spatio-temporal 
demand predictions into the routing engine should have two key benefits (a) 
planning routes with known jobs to better serve future unknown jobs and (b) 
opportunistic repositioning - placing drivers awaiting new jobs in locations where 
new jobs are likely to occur. 
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